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Abstract The main purpose of this paper is to study time operators associated with general-
ized shifts and determined by the Haar and Faber–Schauder bases on the space of continuous
functions. It is given the characterization of the domains of the constructed time operators
and their scalings. It is also shown how scalings of time operators affect the dynamics of
associated semigroups of shift operators.

Keywords Time operator · Evolution semigroup · Shift operator · Haar basis ·
Faber–Schauder basis

1 Introduction

Time operators play an important role in the theory of irreversibility in classical physics.
They are also a useful tool in the spectral analysis and prediction in those dynamical systems
where the time evolution can be formulated in terms of semigroups of operators on vector
spaces. For this reason there is a growing interest in expanding the methods of analysis based
on time operators which were initially associated with a relatively narrow class of reversible
dynamical systems.

The idea behind time operator is to connect a unitary group of evolution operators {Vt }
with a selfadjoint operator T through the commutation relation

V −1
t T Vt = T + tI, (1)
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with I the identity operator. In physics, the group {Vt } describes a (reversible) time evolution
of a distinguished class of elements ρ of the space H called the states

ρ �−→ ρt
df= Vtρ.

For each state ρ from the domain of T the scalar product (ρ,Tρ) represents the average age
of ρ and relation (1) assumes the form

(ρt , Tρt ) = (ρ,Tρ) + t‖ρ‖2. (2)

The physical meaning of (2) is that the average age of each evolved state keeps step with the
external clock time.

In classical dynamical systems time operators have been initially constructed for K-
systems and K-flows (see [13, 15]). A characteristic feature of these reversible dynamical
systems is a very high instability. The observed time evolution more resembles stochastic
than reversible. The main purpose of introducing time operators into K-systems was an at-
tempt to resolve the old standing physical problem of reversibility versus irreversibility [15].
It turned out that by scaling the age eigenvalues, i.e. changing the internal time of a dynam-
ical system, it is possible to obtain different kinds of time evolutions. In particular, it is
possible to reconcile the invertible unitary evolution of unstable dynamical systems with
observed Markovian evolution approaching to equilibrium [14]. The unitary dynamics on a
Hilbert space that admits a time operator is called intrinsically irreversible. The question of
existence of time operators for unitary groups is thoroughly tackled in [9].

It has been found recently [1–3, 18, 19] that time operators can be also associated with
non-invertible dynamics and used as a new tool in the spectral analysis of evolution semi-
groups of unstable dynamical systems. Namely, an operator T on a Hilbert space H is called
a time operator associated with a semigroup {Vt } of partial isometries on H if the following
relation holds

T Vt = VtT + tVt . (3)

Then idea behind the spectral analysis of the evolution semigroup {Vt } through the time
operator T is to decompose T in terms of its eigenvectors ϕn,k , T ϕn,k = nϕn,k

T =
∑

n

n
∑

k

( ·, ϕn,k)ϕn,k

in such a way that the system {ϕn,k} is complete in H, i.e.
∑

n,k( ·, ϕn,k)ϕn,k = I , and the
operator Vt shifts the eigenvectors ϕn,k

Vtϕn,k = ϕn+t,k

(the index n labels the age and k the multiplicity of the spectrum of the time operator).
As a result the eigenvectors ϕn,k of the time operator provide a shift representation of the
evolution

f =
∑

n,k

an,kϕn,k �⇒ Vtf =
∑

n,k

an,kϕn+t,k =
∑

n,k

an−t,kϕn,k.

The knowledge of the eigenvectors of T amounts therefore to solving the prediction problem
for the dynamical system described by the semigroup {Vt }. The spaces Hn spanned by the
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eigenvectors ϕn,k are called the age eigenspaces or the spaces of innovations at time n, as
they correspond to the new information or detail brought at time n. The analysis of evolution
semigroups based on a time operator is called the time operator method.

The simplest links between time operators and approximation theory can be obtained
through wavelets. An arbitrary wavelet multiresolution analysis can be viewed as a K-system
determining a time operator whose age eigenspaces are the wavelet detail subspaces. Con-
versely the eigenspaces of the time operator can be expanded from the unit interval to the
real line giving the multiresolution analysis corresponding to the Haar wavelet [1]. In [2] the
reader can also find connections between time operators and the Shannon–Nyquist theorem.

Time operators are usually defined on Hilbert spaces. However, there are also other im-
portant vector spaces associated with approximation. Such are the Banach spaces Lp , p ≥ 1,
or C[a,b]—the space of continuous functions on an interval [a, b]. The space of continuous
functions plays also a major role in the study of trajectories of stochastic processes.

Time operator can be, in principle, defined on a Banach space in the same way as on
a Hilbert space although there are some essential differences. For example, a given nested
family of closed subspaces of a Hilbert space determines a self adjoint operator with the
spectral projectors onto those subspaces. This is not true in arbitrary Banach space because
it is not always possible to construct an analog of the orthogonal projectors on closed sub-
spaces [12].

For some dynamical systems associated with maps time operators have been extended
from the Hilbert space L2 to the Banach space Lp by replacing the methods of spectral
theory [8, 14], by more efficient martingales methods [16, 17]. For example, for a K-flow it
is possible to extend the time operator from L2 to L1 in such a way that its domain contains
absolutely continuous measures on the phase space.

In this paper we construct the time operators associated with the Haar and the Faber–
Schauder system on the space C[0,1] and study their properties. Note that, the latter basis
corresponds to the interpolation of continuous functions by polygonal lines. We give the
explicit form of the eigen projectors of these time operators and characterize the functions
from their domains.

The plan of the paper is as follows. In Sect. 2 it is established a unified approach to
the construction of time operators on arbitrary Banach spaces. This general approach is
illustrated by determining the time operator for a simple dyadic map and connecting it with
wavelets. Section 3 is devoted to a time operator associated with the Haar basis. It is shown
here a number of results concerning the domain of time operator functions and the influence
of time scalings on the underlying dynamics. In Sect. 4 it is constructed the time operator
associated with the Faber–Schauder system on C[0,1]. The domain of this time operator as
well as the domains of its scalings are also characterized. Some of the results from Sect. 3
have been already announced without proofs in [2].

2 Time Operators on Banach Spaces

Let V and T be two linear operators on a Banach space B such that V is bounded and T is
densely defined. T is said to be a time operator associated with V if V preserves the domain
of T , i.e. V (D(T )) ⊂ D(T ), and

T V k = V kT + kV k, for k ∈ I, (4)

where I is either the set Z of integers or the set N of natural numbers. This corresponds to
the case where V is invertible or not respectively.
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In the above definition of time operator, which is a straightforward generalization of (1),
the operator V is interpreted as a generalized dynamics. In the sequel we will only consider
a particular class of operators V that is specified below.

Consider a Banach space B decomposed as an infinite direct sum of closed subspaces

B =
⊕

n∈I
Bn (5)

in the sense that each x ∈ B has a unique representation

x =
∑

n∈I
xn, (6)

where xn ∈ Bn and the series (6) converges in B. A linear operator V on the Banach space
B of the form (5) will be called a generalized shift with respect to {Bn} if V is bounded and
satisfies

VBn ⊂ Bn+1, for n ∈ I. (7)

We do not assume that V is an isometry neither that it maps Bn onto Bn+1.
Let Pn be the projection from B onto Bn, i.e. Pn is a linear operator on B that corresponds

to each x ∈ B its n-th component xn in representation (6). The family {Pn}n∈I is a resolution
of identity, i.e. x = ∑

n∈I Pnx, for x ∈ B, and determines a time operator. Namely we have

Proposition 1 Assume that the Banach space B has the direct sum decomposition (5) and
let {Pn}n∈I be the corresponding family of projectors. Then the operator

T =
∑

n∈I
nPn, (8)

defined for all x ∈ B, for which the above series converges, is a time operator associated
with an arbitrary generalized shift V with respect to {Bn}n∈I .

Proof Let us show first that V (D(T )) ⊂ D(T ). Suppose that x = ∑
n xn belongs to the

domain D(T ) of T . This means that the series
∑

n Pnx = ∑
n nxn converges in B. On the

other hand, the series
∑

n xn is also convergent. Since V is bounded, by the assumption,
both series

∑
n V xn and

∑
n nV xn converge. Thus

∑
n(n + 1)V xn = ∑

n nV xn + ∑
n V xn

is also convergent, which shows that V x ∈ D(T ).
In order to show the identity (4) nottice first that

V Pn = Pn+1V, for each n ∈ I.

Indeed, if x ∈ B, x = ∑
n xn, then V Pnx = V xn. Conversely, Pn+1V x = Pn+1

∑
k V xk =

V xn, since V xn belongs to Bn+1.
By the induction

V kPn = Pn+kV
k, for all k,n ∈ I. (9)

Since the operators V k are bounded and preserve the domain of T , it follows from (9) that

T V kx =
∑

n

nPnV
kx = V k

∑

n

nPn−kx = V k
∑

n

(n + k)Pnx = V kT + kV kx,

where we put Pj = 0 for j ≤ 0. Note that if I = N, then PjV
k = 0, for j ≤ k. �
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The direct sum decomposition (5) of the Banach space B determines a nested family of
subspaces of B that is a counterpart of a multiresolution analysis in wavelets or a filtration
in stochastic processes. Define

B≤n
df=

⊕

j≤n

Bj

and denote by En the projection from B onto B≤n, i.e. En = ∑
j≤n Pj . En is the projection

onto the past up to the time instant n. The following elementary lemma relates the projectors
En with the dynamics V .

Lemma 1 Suppose that V is a generalized shift on B = ⊕
n∈I Bn. Then

V kEn = En+kV
k, for all k,n ∈ I. (10)

Proof It is enough to show that (9) ⇒ (10), which is elementary in the case I = Z. If I = N

then we have

V kEn = V kP1 + · · · + V kPn = (P1+k + · · · + Pn+k)V
k = (En+k − Ek)V

k = En+kV
k.

The latter equality follows from the direct sum decomposition (5) and the fact that
EkV

k = 0, for each k ≥ 1. �

The above introduced concepts of time operator and generalized shift on Banach spaces,
together with Proposition 1, allow to extend significantly the range of applications of the
time operator method. As an example let us consider the time operator of the Renyi map
which has been introduced in [1]. The 2-adic Renyi map defined on the unit interval [0,1)

by the formula

Sx = 2x (mod 1).

is the simplest chaotic system and the prototype of exact endomorphisms [11]. The map S

is invariant with respect to the Lebesgue measure. Its Koopman operator V

Vf (x) = f (Sx) =
{

f (2x), for x ∈ [0, 1
2 ),

f (2x − 1), for x ∈ [ 1
2 ,1),

(11)

determines the evolution semigroup {V n}n≥0 on each space L
p

[0,1], p ≥ 1.
In order to determine a time operator associated with the Renyi map let us consider the

Walsh-Paley system [20] w0,w1, . . . that form a Schauder basis in each of the spaces L
p

[0,1],
1 < p < ∞. This means that each function f ∈ L

p

[0,1] has a unique expansion

f = w0 +
∞∑

j=1

ajwj = w0 +
∞∑

n=1

2n−1∑

k=2n−1

akwk

convergent in the Lp-norm.
Note that the functions w0, . . . ,w2n−1 form a basis in the vector space of all functions

that are measurable with respect to the σ -algebra An generated by the dyadic division of
[0,1] on 2n parts. The block w2n , . . . ,w2n+1−1 is the contribution that is necessary to obtain
all An+1 measurable functions.
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For each p, 1 < p < ∞, we have the following direct sum decomposition

L
p

[0,1] = W0 ⊕W1 ⊕ · · · ,
where W0 is the space of constant functions and Wn, n = 1,2, . . . , is the linear space
spanned by w2n−1 , . . . ,w2n−1.

Denote by Pn the projection onto Wn

Pn =
2n−1∑

k=2n−1

〈 · ,wk〉wk, (12)

and put W = W1 ⊕W2 ⊕ · · ·. We have

Proposition 2 ([1]) The operator T defined on W as

Tf =
∞∑

n=1

nPnf

is a time operator with respect to the semigroup {V n}∞
n=1 generated by the Koopman oper-

ator of the Renyi map. Each number n = 1,2, . . . is an eigenvalue of T and the functions
w2n−1 , . . . ,w2n−1 are the corresponding eigenvectors.

In order to prove the above proposition it is enough to notice that the Koopman opera-
tor V maps any Walsh function wk from Wn on a Walsh function from Wn+1, and to apply
Proposition 1.

It was shown in [1] that the structure of T when restricted to the L2-space coincides with
the multiresolution analysis (MRA) associated with the Haar wavelet restricted to [0,1].
The eigenspaces W1,W2, . . . of the time operator of the Renyi map coincide with the cor-
responding wavelet spaces. The ladder of spaces W0 ⊂ W0 ⊕ W1 ⊂ W0 ⊕ W1 ⊕ W2 ⊂ · · ·
forms the multiresolution spaces of the Haar wavelet. This means that the time operator
method is a straightforward generalization of MRA.

3 Time Operator Associated with the Haar Basis

The use of the Walsh basis for the construction of the time operator T associated with the
Renyi map makes its spectral decomposition particularly simple. The Walsh functions are
the eigenvectors of T and the action of the Koopman operator V is nothing but a shift
from one Walsh function to another. However, the Walsh basis is not so convenient when
dealing with continuous functions. For example, it is well known that the Haar expansion of
a continuous function on the interval [0,1] converges uniformly, while its Walsh series may
be pointwise divergent. For such reasons it is in some cases more convenient to represent
T in the basis of the Haar functions even if the action of V is no longer a simple shift of
eigenvectors of T .

The representation of the time operator T associated with the Renyi map in the Haar basis
has been already considered in [1]. This decomposition will be now considered in detail. It
will be shown, generalizing the result from [1] that T , when represented in the Haar basis,
is in fact a time operator with respect to a wider class of dynamical semigroups. A special
attention will be paid to T as an operator on the space of continuous functions. It will be
discussed the conditions under which a continuous function belongs to the domain of T and
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how time rescalings affect the dynamics by giving an estimation of the correlation function
associated with the underlying dynamical semigroup. It turns out that for a wide class of
functions the decay is exponential but the exponent depends on the “degree of smoothness”
of the considered function.

Recall that the Haar functions χj on the interval [0,1) are defined as follows:

χ1 ≡ 1, χ2n+k(x) = 2
n
2 1[ 2k−2

2n+1 , 2k−1
2n+1 )(x) − 2

n
2 1[ 2k−1

2n+1 , 2k

2n+1 )(x),

for n = 0,1, . . . , k = 1, . . . ,2n.
Each function f ∈ L2

[0,1] has the expansion in the Haar basis, which can be written in one
of the following equivalent forms

f =
∞∑

j=1

ajχj = a1χ1 +
∞∑

m=0

2m∑

k=1

a2m+kχ2m+k = a1χ1 +
∞∑

n=1

2n∑

k=2n−1+1

akχk, (13)

with aj = ∫ 1
0 f (x)χj (x)dx.

The Haar functions form an orthonormal basis in L2
[0,1] and the linear space generated by

{χk}2n

k=2n−1+1
coincides with Wn. Also the orthogonal projection onto the space generated by

{χk}2n

k=2n−1+1
coincides with the orthogonal projection Pn as defined by (12) for the Walsh

basis. Introduced in Sect. 2 time operator T on W assumes now the form

Tf =
∞∑

n=1

n

2n∑

k=2n−1+1

akχk, (14)

where f ∈ L2
[0,1] with

∫ 1
0 f (x)dx = 0 and ak are as in (13). Therefore for a given n the

Haar functions χ2n+k , k = 1, . . . ,2n, are the eigenfunctions of T corresponding to the same
eigenvalue n (see [1]). The Koopman operator V of the Renyi map does not transport a
Haar function corresponding to the eigenvalue n onto a single Haar function but onto a
linear combination of two Haar functions corresponding to the eigenvalue n + 1 (see [1]).
Nevertheless the assumptions of Proposition 1 are satisfied so that the commutation relation
(4) still holds. In fact we have the following slightly more general result:

Theorem 1 The operator T defined on W = L2
[0,1] � {1} as

Tf =
∞∑

n=1

nPn,

where

Pnf =
2n∑

2n−1+1

[∫ 1

0
f (x)χk(x)dx

]
χk

is a time operator with respect to any semigroup {V n}n≥0, where V is a bounded operator
on W such that V (Wn) ⊂ Wn+1, for each n = 1,2, . . . .

One of the advantages of the choice of the Haar functions for the representation of T is
that they are more suitable when dealing with continuous functions. The following propo-
sition gives a sufficient condition that a continuous function belongs to the domain of T

defined by (14).
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Proposition 3 Any function f ∈ C[0,1] such that its modulus of continuity satisfies the prop-
erty

∫ 1

0
ωf (x)

logx

x
dx > −∞

belongs to the domain of T .

The proof of the above proposition can be found in [1]. However it will also follow from
a more general theorem which will be proved below.

Remind that the modulus of continuity ωf [21] is defined by:

ωf (δ) = sup
x,y∈[0,1]
|x−y|≤δ

|f (x) − f (y)|, 0 ≤ δ ≤ 1,

for any f ∈ C[0,1].
If a function f is a Lipschitz function, i.e. there are constants K > 0 and 0 < α ≤ 1 such

that |f (x) − f (y)| ≤ K|x − y|α , for each x, y ∈ [0,1], then ωf (x) ≤ K|x|α . It is therefore
easy to see that a Lipschitz function with an exponent α, 0 < α ≤ 1, satisfies the assumption
of Proposition 3 and, consequently, belongs to the domain of T expanded in the Haar basis.

It is worth noting that if the time operator T is expanded in terms of the Walsh basis then
the sufficient condition that a continuous function belongs to its domain is more restrictive.
In particular, in the class of Lipschitz functions only those with the exponent α > 1

2 belong
to the domain of T . The proof of this fact, which is based on some estimations for the
Walsh–Fourier coefficients, will be presented elsewhere.

Note that the family of Haar functions forms also a Schauder basis in the Banach space
L

p

[0,1], 1 ≤ p < ∞ and this basis is unconditional if p > 1. This means that every function
f ∈ L

p

[0,1] has the representation (13) convergent in Lp-norm (unconditionally convergent if
p > 1). The Walsh functions also form a Schauder basis in Lp , 1 < p < ∞, but not in L1

(see [7] and references therein).
Let us now consider one of the basic tools in the study of dynamical systems with the

use of time operator—the time scaling. This corresponds to filtering in signal processing.
The time scaling means that the time operator T is replaced by some of its operator function
	(T ), where 	(·) is a real valued function. The application of 	 on T may, of course, affect
its domain. Below we present sufficient conditions under which a continuous function f

belongs to the domain of 	(T ).

Theorem 2 Let

Tf =
∞∑

n=1

n

2n∑

k=2n−1−1

akχk, (15)

where ak = ∫ 1
0 f (x)χk dx,

∫ 1
0 f (x)dx = 0, and let 	 be a real function on N. Suppose that

f ∈ C[0,1].

(1) If the modulus of continuity ωf of f satisfies

∞∑

n=1

|	(n)|2ω2
f

(
1

2n

)
< ∞,
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then f belongs to the domain of 	(T ), where 	(T ) is considered as an operator on
L2 � [1].

(2) If ωf satisfies

∞∑

n=1

|	(n)|ωf

(
1

2n

)
< ∞

then the series expansion of 	(T ) converges uniformly on [0,1].
In particular, each function f for which

∫ 1

0
ωf (x)

logx

x
dx > −∞

belongs to the domain of T and the expansion (15) of Tf converges uniformly on [0,1].

Proof If
∫ 1

0 f (x)dx = 0, then f has the following expansion in the Haar basis:

f =
∞∑

n=1

2n∑

k=2n−1+1

akχk, (16)

where an = ∫ 1
0 f (x)χk(x) dx, and the series converges in L2-norm. Since f is continuous,

the series (16) converges also uniformly on [0,1].
Formally, we have

	(T )f =
∞∑

n=1

	(n)

2n∑

k=2n−1+1

akχk. (17)

Thus f belongs to the domain of 	(T ) if and only if this series is L2-convergent. Since {χn}
is a complete orthonormal system in L2

[0,1], the convergence of (17) is in turn equivalent to

∞∑

n=1

	2(n)

2n∑

k=2n−1+1

|ak|2 < ∞.

Because |ak| ≤ 1

2·2 n−1
2

ωf ( 1
2n ) [4], we have

∞∑

n=1

	2(n)

2n∑

k=2n−1+1

|ak|2 ≤
∞∑

n=1

	2(n)2n−1 1

4 · 2n−1
ω2

f

(
1

2n

)

≤ 1

4

∞∑

n=1

	2(n)ω2
f

(
1

2n

)
,

which proves (1). In a similar way (note that χ2n−1+1, . . . , χ2n have disjoint supports) we
obtain

∞∑

n=1

|	(n)|
2n∑

k=2n−1+1

|ak||χk| ≤ 1

2

∞∑

n=1

|	(n)|ωf

(
1

2n

)
,
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which proves (2).
In order to prove the last assertion take 	(n) = n and notice that the function is non-

decreasing on [0,1] and − log t

t
is decreasing, we have

−
∫ 1

0
ωf (t)

log t

t
dt =

∞∑

n=1

∫ 1
2n−1

1
2n

ωf (t)

(
− log t

t

)
dt

≥
∞∑

n=1

ωf

(
1

2n−1

)(
− log 1

2n

1
2n

)(
1

2n−1
− 1

2n

)

= log 2
∞∑

n=1

nωf

(
1

2n−1

)

≥ 4−1 log 2
∞∑

n=1

nωf

(
1

2n

)
. (18)

The last inequality is a consequence of the property ωf (x + y) ≤ ωf (x) + ωf (y) valid for
x, y, x + y ∈ [0,1]. Since the left hand side of (18) is finite by the assumption, the series
(15) is uniformly and absolutely convergent. This concludes the proof. �

Finally we shall show how scaling affect the dynamics. We consider the action semigroup
{V N } on the functions transformed through 	(T ). The relevant value that we would like to
evaluate is the correlation function

Rf (N)
df= (V N	(T )(f ),	(T )(f )),

where (·, ·) denotes the scalar product in L2
[0,1].

Theorem 3 Let V be the Koopman operator of some map of the interval [0,1] such that the
corresponding semigroup {V N } on L2

[0,1] satisfies the assumptions of Theorem 1. Then for
every function f ∈ C[0,1] which belongs to the domain of 	(T ) we have

|Rf (N)| ≤ 1

4

∞∑

n=1

|	(n)	(n + N)|ω
(

1

2n

)
ω

(
1

2n+N

)
.

Proof In order to calculate the correlation function let us represent 	 as follows

	(f ) =
∞∑

n=0

	(n + 1)

2n∑

k=1

a2n+kχ2n+k.

Let N and n be fixed. By the assumption each V Nχ2n+k , k = 1, . . . ,2n, is a linear combina-
tion of some basis elements χ2n+N +k :

V Nχ2n+k =
nk∑

j=1

α2n+N +lj (k)χ2n+N +lj (k), k = 1, . . . ,2n, (19)

for some choice of indices l1(k), . . . , lnk
(k).
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Since V is also a Koopman operator, V N is a multiplicative map, i.e. Vfg = Vf Vg.
Because, for a given n, the functions χ2n+k , k = 1, . . . ,2n, have disjoint supports, then also
V Nχ2n+k must have disjont supports. This implies that in the representation (19) all lj (k)

are different and

n1 + · · · + n2n ≤ 2n+N . (20)

We have

Rf (N) =
( ∞∑

n=0

	(n + 1)

2n∑

k=1

a2n+kV
Nχ2n+k,

∞∑

n=0

	(n + 1)

2n∑

k=1

a2n+kχ2n+k

)

=
∞∑

n=0

	(n + 1)	(n + N + 1)

×
(

2n∑

k=1

a2n+k

nk∑

j=1

α2n+N +lj (k)χ2n+N +lj (k),

2n+N+1∑

k=1

a2n+N +kχ2n+N +k

)

=
∞∑

n=0

	(n + 1)	(n + N + 1)

2n∑

k=1

a2n+k

nk∑

j=1

a2n+N +lj (k)α2n+N +lj (k).

Thus

|Rf (N)| ≤
∞∑

n=0

|	(n + 1)	(n + N + 1)|
2n∑

k=1

1

2 · 2
n
2
ω

(
1

2n+1

)

×
nk∑

j=1

1

2 · 2
n+N

2

ω

(
1

2n+N+1

)
|α2n+N +lj (k)|

= 1

4
· 1

2
N
2

∞∑

n=0

|	(n + 1)	(n + N + 1)| 1

2n
ω

(
1

2n+1

)
ω

(
1

2n+N+1

)

×
2n∑

k=1

nk∑

j=1

|α2n+N +lj (k)|.

Note that

‖V Nχ2n+k‖2
L2 =

∥∥∥∥∥

nk∑

j=1

α2n+N +lj (k)χ2n+N +lj (k)

∥∥∥∥∥

2

=
nk∑

j=1

|α2n+N +lj (k)|2,

and since ‖V ‖ ≤ 1, we have

nk∑

j=1

|α2n+N +lj (k)|2 ≤ ‖V N‖2‖χ2n+N +k‖2
L2 ≤ 1.
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Therefore, applying Hölder’s inequality we get

nk∑

j=1

|α
2n+N +lj (k)

1
2
| ≤ √

nk

(
nk∑

j=1

|α2n+N +lj (k)|
2) 1

2

≤ √
nk.

Applying Hölder’s inequality once more together with (20) we obtain

2n∑

k=1

nk∑

j=1

|α2n+N +lj (k)| ≤
2n∑

k=1

√
nk ≤ 2

n
2

(
2n∑

k=1

nk

) 1
2

≤ 2
n
2 · 2

n+N
2 .

Consequently

|Rf (N)| ≤ 1

4
· 1

2
N
2

∞∑

n=0

|	(n + 1)	(n + N + 1)| 1

2n
ω

(
1

2n+1

)
ω

(
1

2n+N+1

)
2n2

N
2 ,

and rearranging the summation we finally get

|Rf (N)| ≤ 1

4

∞∑

n=1

|	(n)	(n + N)|ω
(

1

2n

)
ω

(
1

2n+N

)
,

which ends the proof. �

Under the same assumptions as in Theorem 3 we have

Corollary 1 If f is a Hölder function with the exponent p, 0 < p ≤ 1, then

|Rf (N)| ≤ 1

4
· 1

2pN

∞∑

n=1

|	(n)	(n + N)| 1

22pn
. (21)

Corollary 2 If 	(x) is a bounded function then the series on the right hand side of (21) is
convergent and

|Rf (N)| ≤ K

(
1

2p

)N

= Ke−(p ln 2)N ,

for some K > 0.

It should be noticed that for a bounded 	 any continuous function is in the domain of
	(T ). In particular, taking 	(x) ≡ 1 we see that the decay of the correlations of (V Nf,f )

is at least exponential with the exponent depending on the degree of smoothness of f . If f

is differentiable then the exponent is ln 2.

Example Let V be the Koopman operator of the Renyi map. Since

V χ2n+k = 1√
2
(χ2n+1+k + χ2n+1++2n+k ),

V satisfies the assumptions of Theorem 1.
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4 Time Operator Associated with the Faber–Schauder Basis in C[0,1]

Although each continuous function can be expanded in terms of the Haar basis the Haar
functions lay outside the space C[0,1]. We shall show that the Haar basis in L1

[0,1] can be
transported to C[0,1] by the means of integration giving rise to a new basis in C[0,1]. Namely,
let us define the operator of indefinite integration J : L1

[0,1] → C[0,1]:

(Jf )(t)
df=

∫ t

0
f (s)ds, for f ∈ L1

[0,1].

The range of J consists of absolutely continuous functions. Since the series (13) is also
uniformly convergent [10] we can apply J to both sides getting

(Jf )(t) =
∞∑

j=1

[∫ 1

0
f (s)χj (s)ds

]
(Jχj )(t)

=
∞∑

j=1

[∫ 1

0
χj (s)d(Jf )(s)

]
ϕj (t), (22)

where ϕj (t)
df= (Jχj )(t), j = 1,2, . . . .

Actually the representation (22) extends on all functions g ∈ C[0,1]. To be more precise
the family {ϕj }∞

j=1 together with the constant function ϕ0 ≡ 1 form a Schauder basis in the
Banach space C[0,1]. We have [4]

g(t) = g(0)ϕ0 +
∞∑

j=1

[∫ 1

0
χj (s) dg(s)

]
ϕj (t), (23)

where the series converges uniformly in [0,1].
In a similar way, applying J to both sides of (14), we can transport the time operator T

to C[0,1]. To be more precise, let C̃ be the space of all functions g ∈ C[0,1] such that g(0) =
g(1) = 0 and let Cn, n = 1,2, . . . , be the subspace of C̃ spanned by ϕk , 2n−1 < k ≤ 2n. Define
the operator P̃n : C̃ → Cn putting

P̃ng(t) =
2n∑

k=2n−1+1

∫ 1

0
χk(s)dg(s)ϕk(t). (24)

Theorem 4 The operator T̃ defined on C̃ as

T̃ =
∞∑

n=1

nP̃n,

is a time operator with respect to any semigroup {V n}n≥0, where V is a bounded operator
on C̃ such that V (Cn) ⊂ Cn+1, for each n = 1,2, . . . . The explicit form of P̃n is

P̃ng(t) = 2
n−1

2

2n−1∑

k=1

[
2g

(
2k − 1

2n

)
− g

(
k − 1

2n−1

)
− g

(
k

2n−1

)]
ϕ2n−1+k(t) (25)
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Proof Since the functions ϕ0, ϕ1, . . . form a Schauder basis in C[0,1] we have the direct sum
decomposition

C̃ = C1 ⊕ C2 ⊕ · · ·
and each P̃n is the projector onto Cn. It is easy to see that

V P̃n = P̃n+1V, (26)

for each n ∈ N. Indeed, since each g ∈ C̃ has a unique expansion

g =
∞∑

n=1

2n∑

k=2n−1+1

bkϕk. (27)

then

V P̃ng = V

(
2n∑

k=2n−1+1

bkϕk

)
=

2n∑

k=2n−1+1

bkV ϕk.

On the other hand, among the elements {V ϕj } only those with 2n−1 < j ≤ 2n are elements
of Cn+1. Therefore

P̃n+1Vg =
2n∑

j=2n−1+1

bjV ϕj ,

which implies (26). Consequently the assumptions of Proposition 1 are satisfied and T̃

is a time operator with respect to {V n}n≥0. The explicit form (25) of P̃n follows directly
from (24). �

Constructed in this way time operator arises as the integral transformation of the time
operator T for the Renyi map expanded in terms of the Haar basis, i.e. for g = Jf we have

T̃ g = Tf.

Moreover, since T̃ is a time operator with respect to any bounded operator V , which maps
each Schauder function ϕ2n−1+k , k = 1, . . . ,2n−1, onto a linear combination of the functions
ϕ2n+k′ , k′ = 1, . . . ,2n, it can be also associated with the Koopman operator V of the Renyi
map (11) acting on the space C̃. Indeed, V is, of course, bounded on C̃ and one can check
easily that

V ϕ2n−1+k = √
2(ϕ2n+k + ϕ2n+2n−1+k),

for n = 1,2, . . . , k = 1, . . . ,2n.
Observe also that the Koopman operator V of the Renyi map together with the integral

operator J satisfy the following commutation relation

V Jf = 2JVf, (28)

valid for each f ∈ L1 such that
∫ 1

0 f (s)d(s) = 0.
Using the time operator terminology we can say now that the function g ∈ C̃, has the age

n if its representation (23) consists of the n-th block, i.e. those with the indices k = 2n−1 +
1, . . . ,2n. Therefore the flow of time means step by step interpolation of g by polygonal
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lines. The polygonal line ln(x), n = 1,2, . . . , corresponding to the dyadic division of the
interval [0,1] on 2n parts is

ln(x) =
2n∑

k=1

{[
g

(
k

2n

)
− g

(
k − 1

2n

)]
(2nx − k + 1) + g

(
k − 1

2n

)}
1[ k−1

2n , k
2n ](x).

Since the time operators considered here are defined on infinite dimensional Banach
spaces, it is easy to see that their domains are always proper subsets of the underlined
spaces. Therefore it arises the problem of characterization of the domain of a time oper-
ator. It is also important for applications of time operator techniques, especially for filtering,
to characterize the domain of a function of a given time operator.

It is easy to see that if the eigenfunctions of a time operator T defined on a Banach
space B form an unconditional Schauder basis then for any bounded function 	 : N → R the
domain of 	(T ) coincides with B. However the space C[0,1] does not have an unconditional
basis. Therefore not for each bounded function 	 the operator 	(T̃ ) is correctly defined
on C[0,1]. The next theorem provides sufficient conditions for a function g to be in the domain
of T̃ , as well as to be in the domain of 	(T̃ ) in terms of the modulus of continuity.

Theorem 5 Let 	 be a real valued function defined on N. Any function g ∈ C̃ such that its
modulus of continuity ωg satisfies the property

∞∑

n=1

|	(n)|ωg(2
−n) < ∞ (29)

belongs to the domain of 	(T̃ ) and the series
∑

n 	(n)P̃ng(t) is uniformly and absolutely
convergent. In particular, if the modulus of continuity ωg satisfies

∫ 1

0
ωg(t)

log t

t
dt > −∞ (30)

then g belongs to the domain of T̃ and the series

∞∑

n=1

nP̃ng(t) (31)

is uniformly and absolutely convergent.

Proof Let g ∈ C̃ be such that its modulus of continuity satisfies (29). Let bn,k
df=∫ 1

0 χ2n−1+k(s)dg(s). We have

|bn,k| =
∣∣∣∣
∫ 1

0
χ2n−1+k(s)dg(s)

∣∣∣∣

≤ 2
n−1

2

∣∣∣∣g
(

k − 1

2n−1

)
− g

(
2k − 1

2n

)∣∣∣∣ + 2
n−1

2

∣∣∣∣g
(

2k − 1

2n

)
− g

(
k

2n−1

)∣∣∣∣

≤ 2
n+1

2 ωg

(
1

2n

)
,
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for n = 1,2, . . . , k = 1, . . . ,2n−1. Therefore

∞∑

n=1

|	(n)P̃ng(t)| ≤
∞∑

n=1

2n−1∑

k=1

|	(n)bn,k|ϕn,k(t) ≤ 2
∞∑

n=1

|	(n)|ωg

(
1

2n

)

(nottice that for a fixed n the supports of ϕn,k, k = 1, . . . ,2n−1 are disjoint), which proves
the first part of the theorem. To show the second part observe that putting 	(x) = x we have

∞∑

n=1

n|P̃ng(t)| ≤
∞∑

n=1

2n−1∑

k=1

n|bn,k|ϕn,k(t) ≤
∞∑

n=1

nωg

(
1

2n

)
.

On the other hand, since the function ωg(t) is non-decreasing on [0,1] and − log t

t
is decreas-

ing, we have

−
∫ 1

0
ωg(t)

log t

t
dt =

∞∑

n=1

∫ 1
2n−1

1
2n

ωg(t)

(
− log t

t

)
dt

≥
∞∑

n=1

ωg

(
1

2n−1

)(
− log 1

2n

1
2n

)(
1

2n−1
− 1

2n

)

= log 2
∞∑

n=1

nωg

(
1

2n−1

)

≥ 4−1 log 2
∞∑

n=1

nωg

(
1

2n

)
. (32)

The last inequality is a consequence of the property ωg(x + y) ≤ ωg(x) + ωg(y) valid for
x, y, x + y ∈ [0,1]. Since the left hand side of (32) is finite by the assumption, the series
(31) is uniformly and absolutely convergent. This concludes the proof. �

Corollary 3 If 	 is a bounded function on N, then each g ∈ C̃ such that
∑∞

n=1 ωg(2−n) < ∞
belongs to the domain of 	(T̃ ).

Corollary 4 If g is a Lipschitz function with an exponent 0 < p ≤ 1, then g belongs to the
domain of T̃ .

Proof It follows from the definition of ωg that if g satisfies |g(x) − g(y)| ≤ |x − y|p then

ωg(t) ≤ Ktp . Since
∫ 1

0 tp−1 log t dt > −∞, for p > 0, the condition (30) is satisfied. �

We have already mentioned about the importance of time scalings realized through the
	 operators defined as functions of the time operator. Somewhat different is the role of the
integration transformation J , which satisfies together with T the commutation relation (28).
Applying the transformation J on a functional basis makes approximations “smoother”. We
have seen already that applying J on the orthonormal Haar basis we obtain the time oper-
ator associated with approximations by continuous functions, i.e. with the Faber–Schauder
basis in C[0,1]. Similarly, starting from a time operator associated with an orthogonal basis of
continuous functions we can get a time operator associated with approximation in the space
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C(1)

[0,1] of differentiable functions. As an example let us consider the Franklin system φn,
n = 0,1, . . . in C[0,1]. Recall that the functions φn are obtained through the Schmidt ortho-
normalization of the Faber–Schauder functions [5, 6, 20]. The Franklin system is a Schauder
basis in C[0,1]. We can therefore apply Proposition 1 constructing, as in Theorem 4, the time
operator associated with a given partition of {φn} on blocks. On the other hand the system

1, Jφ0, Jφ1, . . . (33)

is also a Schauder basis in C[0,1] and each f ∈ C[0,1] has the expansion

f (t) = f (0) +
∞∑

n=0

anJφn,

where an = ∫ 1
0 φn(s)df (s). This implies that (33) is also a Schauder basis in C(1)

[0,1] endowed

with the norm ‖f ‖ df= max0≤s≤1 |f (s)|+max0≤s≤1 |f ′(s)|. Repeating again the proof of The-
orem 4 we obtain a time operator in C(1)

[0,1] associated with this basis, which is nothing but the
composition of the integral transformation with time operator constructed formerly on C[0,1].
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